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Abstract. The rate-distortion trade-off in the discrete cosine trans-
form-based coding scheme in ISO/JPEG is determined by the quan-
tization table To permit a different quality to be selected by a user.
a common practice 1s 1o scale the standard quantization tables that
have been empirically determined from psychovisual experiments.
In this paper. an algorithm is presented to generate a quantization
table that is optimized for a given image and for a given distortion.
The computational complexity of this algorithm is reduced compared
to other techniques. The optimized. image-adaptive quantization ta-
ble typically yields an improvement of 15% to 20% in bit rate com-
pared to the use of standard, scaled quantization tables. Once an
optimized quantization table has been generated for a specific im-
age. it can also be applied to other images with similar content with
a small sacrifice in bil rate

1 Introduction

The ISO/PEG standard is an international standard for
continuous-tone still-image compression.' Its goal is to sup-
port a wide range of applications. Its discrete cosine transform
(DCT)-based encoding steps include forward DCT (FDCT).
quantization. and entropy coding. The decoding steps consist
of entropy decoding. dequantization. and inverse DCT
(IDCT). The image to be encoded is first divided into 8 X8
biocks. On each block a FDCT is performed. The 64 DCT
coefficients are uniformly quantized in accordance with a
quantization table. An example of a quantization table is
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shown in Fig. 1. The purpose of quantization is to achieve a
higher compression ratio (or lower bit rate) by representing
the coefficients with lesser precision. Because quantization
introduces distortion in the decoded image. naturally. there
is a rate-distortion trade-off. This trade-off is determined by
the quantization table. Each element in the quantization table
represents the step size of the uniform quantizer for its cor-
responding coefficient. The index values to be coded are
calculated as

Z,(k)=NINT[z,(k)/Q(k)] for k=0, .... 63 . (1

where 2, (k) is the DCT coefficient. Q(k) is the corresponding
value in the quantization table. NINT is the nearest integer
function. and n the block index. The DCT coefficients are
reordered in a zigzag manner. The dc coefficients are coded
using differential pulse code modulation (DPCM). For the
ordered ac coefficients. pairs of the runlength of zeros and
the magnitude of the following nonzero coefticients are
formed. These pairs are entropy coded. At the decoder. the
quantization table is either extracted from the data stream or
known as a default. Afier the Z,(k)’s are decoded. the. de-
quantized values of the DCT coefficients are given by

L (K)=Z k)X Q) for k=0..... 63 . (2)
Finally. after reordering. an IDCT is performed to reconstruct
the image block.

Psychovisual experiments described in Ref. 2 have led to
a set of quantization tables. which are documented in Ref. |
(Fig. 1). These tables are based on the visibility of the 8 X 8
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16 11 10 16 24 40 51 61
12 i2 14 19 26 58 60 55
4 15 16 24 40 57 69 56
14 17 22 29 51 8 80 62

18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 7¢ 87 103 121 120 101
7292 95 9% 112 100 103 99

Fig. 1 The quan':zatior table for the luminance component docu-
mented in the ISO/JPEG draft international standard.

DCT basis functions measured under certain conditions. To
achieve difterent bit rates and fidelity. a popular practice is
1o scale the table< according to a scaling curve. The quan-
tization tables generated by this practice are by no means
optimal. By “"optimal.”” we mean that for a given image and
a given distortion value under an image quality measure. the
bit rate is minimized. or for a given image and a given bit
rate. the distortion value is minimized.

Theoretically speaking. one can determine the optimal
quantization table by exhaustive search over the set of pos-
sible quantization tables. The values of the quantization table
elements are specified to lie in the range [1.255]. Since there
is one uniform quantizer for each DCT coefficient. there are
255 possible quantization tables. For a given image and for
each quantization table. a specific distortion value and bit
rate can be determined. If the pairs of the distortion values
and the corresponding bit rates are plotted to form a 2-D
graph. the optimal quantization table can be determined by
looking for the quantization table corresponding to the lowest
point for a given bit rate or by looking for the quantization
table corresponding to the left-most point for a given dis-
tortion value (Fig. 2). Obviously. this process of an exhausted
search over all possible Q(k)’s is impractical.

In Ref. 3. an algorithm was presented to generate opti-
mized quantization tables. Starting from an initial quanti-
zation table of very coarse quantizers. the algorithm decreases
the step sizes of the quantizers one at a time until a given bit
rate is reached. At each time. the element of the quantization
table to be updated is chosen to be the one that gives the
largest ratio of decrease in distortion to increase in bit rate.
The quantization table found from this algorithm is again
suboptimal. yet it gives a larger peak SNR than that resulting
from the quantization table determined by psychovisual ex-
periments. However, its main disadvantage is its computa-
tional complexity. With the DC quantizer step size fixed. the
algorithm requires £°'_, [Q(k) — 1] evaluations of the dis-
tortion value and bit rate at each iteration.

In this paper. we present an algorithm for optimizing an
image-adaptive quantization table that is aimed at reducing
the computational complexity. First, we allow the quanti-
z:tion table element to go up or down depending on whether
a coarser or a finer quantization table is needed to achieve
the target distortion value at each iteration. We also limit the
magnitude of changc in the quantization table element values
so that our method requires only 63 evaluations of the dis-
tortion value and bit rate at each iteration. Second. we propose
the use of a novel entropy estimator to estimate the bit rate.
The statistics required to calculate the entropy can be more
easily updated than the statistics required to calculate the bit
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Fig. 2 A pictorial representation of the procedure to find the optimal
quantization table for a target distortion value (or a target MSQE
value). The coordinates of each point on the graph represent the
distortion value (or MSQE value) and bit rate (or defined entropy)
associated with a corresponding quantization table. At each iteration,
we vary the quantization table element such that the point is moved
up the gentlest slope if it is below the target line or down the steepest
slope if it is above the target line. The procedure terminates when
the downslope of one quantization table (QT A) equais the upsiope
of another quantization table (QT B). The optimized quantization
table 1s QT A or QT B.

rate. As a result. this further reduces the computation com-
plexity.

The algorithm presented in this paper is efficient in ob-
taining an optimized quantization table for a given image so
that the image can be efficiently encoded using JPEG for a
given distortion value. This paper also shows that the quan-
tization table determined for a particular image 1s good for
the set of images with similar content. i.e.. a whole set of
similar images can be efficiently encoded using the same
quantization table. This observation implies that the algo-
rithm may be run just once for the whole set or class of images.
This fact enhances the value of the algorithm.

2 Algorithm

As mentioned earlier. for a given image. the distortion value
and bit rate are associated with a quantization table. Points
with the coordinates representing the distortion value and bit
rate pairs can be plotted to form a 2-D graph. We illustrate
our algorithm pictorially with this graph. Before we discuss
the procedure. however, we first discuss the distortion mea-
sure we used in our experiment and the use of an entropy
estimator to be defined as a bit rate estimate.

2.1 Distortion Measure

We use the mean square quantization error (MSQE) of the
DCT coefficients as the distortion measure. MSQE is giv-
en by

N-1 63

MSQE= > X [z (k) =z, (b)) . (3)

n=04=0

where N is the number of blocks. The two reasons for using
the MSQE are. first. MSQE can be readily calculated from
the unquantized and the dequantized DCT coefficients. The
alternative. which is to use the pixel error as the distortion
measure, is less attractive because it is computationally ex-
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pensive 10 comert the DCT coefticients to pixel values at
each hieratior Second. the MSQE can be weighted by a
human visual system (HV'S) response function without much
complication so thatthe weighied MSQE can correspond
more to the perceptual quality . Details can be found in Refs. 4,
S. and 6. However. in our experiments. we have used un-
weighted MSQE for simplicity.

2.2 Bit Rare Measure

Determining the bit rate of an encoded image generally re-
quires compieting the whole encoding process. This would
be computationally expensive in an iterative procedure. In-
stead of measuring the exact bit rate. we estimate it by an
entropy of the quantized values. Empirically determined. the
following definition of entropy reflects the bit rate well:

M
E= E }‘ | = P) Pusivg logs Pesiv)l 4)
v=ta={)
where P(siv) is the conditional probability of s= 5, (k) given
x=X, (X ie.

A-1o6d

SS sls =S, (k] 8lx =X, k)]

n=04=1

P(sivy= remrmrn (5)
S S sla-x, )
n=04=1
P(x) is the probability of x=X, (k). i.e..
V-1 63
Pxi= X N 8lx=X,(k)A63N) : (6)

n=0i=1

8(-)is the Dirac deha function: §,, (k) is the order of magnitude
of the quantized values. i.e..

S thy= 1.27'<1Z (k) <2 and Z,(k)=0
" 0.2,(k)=0

(7)
063

X, (k) determines whether the previous quantized value is
2Zero or nonzero.

_[is,k-1=0 . ,
X""‘"{o.s,,w-naéo for k=2.....63 :

(8)
X,(h=1":

N is the number of 8 X 8 blocks; and M is the maximum ¢ in
Eq. (7).

The key point in the empirical estimate of the entropy is
that the impontant role of zeros and runs of zeros is captured
in the simple definition of X, (k). The entropy value versus
the actual bit rate is shown in Fig. 3. An expanded view is
given in Fig. 4. A perfect bit rate measure would align all
the curves in Fig. 4 on a straight line. Figures 3 and 4 thus
illustrate the entropy's effectiveness as a bit rate measure,
and based on the almost linear relationship. we assume

AB=CXAE , 9)
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Fig. 3 A typical curve of bit rate of an encoded image vs. our en-

tropy estimate using the quantized DCT values. It shows an aimost
linear relationship.
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Fig. 4 An expanded view of typical curves of bit rate versus our
entropy estimate using the quantized DCT vaiues. For each curve.
only one Q(k) varies: Q(4) varies from 8 to 16, Q(12) from 12 to
20, and Q(24) from 25 to 33. The relationships are complicated but
can be reasonably approximated by a linear equation.

where A E denotes the change of the entropy of the quantizer
output values. C is a constant. and AB is the change of bit
rate. Our definition of entropy captures the role of long run-
lengths of zeros in bit rate reduction using entropy encoding.
The advantage of using this model as a bit rate measure is
that the bit rate is estimated without actually going through
the entropy coding. and calculating AE requires fewer op-
erations. This is because the statistics required to calculate
the entropy can be more easily updated than the statistics
required to calculate the true bit rate because AE involves
only second-order statistics, with no encoding steps.




Design of image-adaptive quantization tables for JPEG

2.3 Procedure

The procedure can be depicted as shown in Fig. 2. Qualita-
tively. we start with a point on the graph comresponding 10
an initie} quantization table. The coordinates of the point
represent the values of the MSQE and the entropy. Our al-
gorithm changes the quantization table element one at a rime
such that the next point. corresponding to another quanti-
zation table. moves down the most negative slope or up the
least negative slope. wiggling about the target MSQE value.
With iterations. convergence is achieved when two points
oscillate from one to the other as the downslope and upslope
become essentially the same. The main steps of the algorithm
are as follows:

1. Specify an initial quantization table with Q(0) = 16 and

Qukyin |1, ....255] fork=1..... 63.

Calcutate the MSQE. If the calculated MSQE is larger

than the target MSQE. for each & from {1..... 63}. find

the change in the defined entropy value. AE. and the
change in the MSQE. AMSQE. Select the & that gives
the smallest —~ A E/AMSQE ratio if Q(k) is replaced by

Quk)—S. where S is a positive integer. Call that & &,

and the corresponding ratio R, Replace

Q( kllll“ ) b.\’ Q( kll\lﬂ ) - S'

3. Calculate the MSQE. If the calculated MSQE is smaller
than or equal to the target MSQE. for each & from {1.
....63}. find AE and AMSQE. Select the 4 that gives
the largest — A E/MSQE ratio if Q(k) is replaced by
Quk)y+S. Call that & k,,,, and the corresponding ratio
Rll\.l\ * Replace Q(kn\.i\ ) b.\ Q(kmu\ , + S'

4. Repeat steps 2. 3. and 4 until R, SR,

~

The gquantization table element for dc coefficients is set
to 16 for simplicity. This corresponds to 7-bit precision. It
can be specified to other values. The greedy bit allocation
technique can be applied well to obtain the initial quantization
table. It assigns more bits to represent the DCT coefticients
with a greater variance over the ensemble of blocks and fewer
bits to represent those with a smaller variance. The variances
of the 63 ac coefficients. . are first found. The geometric
mean p is given by

p=Moi)' ™ for k=1.....63 . (10)

Let B denote the total number of bits assigned to all 63
quantizers. b the average number of bits for each quantizer.
and Qk) the quantizer step size for the A"th set of ac coef-
ficients. Then the results are

b=B/63 . (h
b= b+ (1/12)logai/p)] . (12)
Quhk)y=8X27/2b,— 1) . (13)

and the Q(k)’s have to be clipped to fall between [1.255].
The S is the magnitude of change in the quantizer step
size at each iteration. Usually. the change in quantizer step
size for small k's can more signiticantly affect the ratio than
that for large 4's. This is because the energy is concentrated

in the low frequencies because it is the energy compaction
property of the FDCT. Therefore. S can be made small for
small &"s and large for large k's. We may also vary §. using
large S for the early stage of iteration and small § at the later
stage. so that the convergence is approached faster at the
carly stage yet without losing precision at the later stage.

Convergence to oxcillation is guaranteed on the condition
that the current quantization table is allowed to swing back
1o its most recent parent. If this condition is not allowed. the
algorithm terminates with R, <R,.,. To improve the rate
of convergence. instead of chunging one element in the quan-
tization table at a time. we may change several elements after
searching the ks for the best ratios.

The algorithm guarantees convergence independent of the
initial quantization table. as opposed to the strict requirement
on the initial quantization table in Ref. 3. We. therefore. may
wisely pick an initial quantization table to reduce the number
of iterations needed. Note also that this algorithm can be
modified to find the optimum quantization table for a spec-
ified bit rate instead of specifyving a given distortion.

3 Simuiation Results

To present the results of our experiments. we use two test
images: “"Lena’" and a text image. Both are 8-bit 256 X 256
images. We set S to 7. 3. and | sequentially for all k’s so
that computation is cut down at the early stage. and the pro-
cess is refined at the later stage.

The gain from using the optimized quantization tables over
using the scaled. standard tables is shown in Figs. 5 and 6.
Figures S and 6 show the mean square pixel error (MSE)
versus bit rate graphs for “"Lena’™ and the text image. re-
spectively. There are two sets of points for comparison: one
for the quantization tables optimized through the algorithm
at different target MSQEs. and the other for the quantization
tables from scaling the quantization table in Fig. 1. On these
graphs showing the final results. the MSE is used instead of
the MSQE because the MSE can be readily converted to the
SNR. Also the actual bit rate is used instead of the entropy
value. Both Figs. 5 and 6 show that a reduction of 14% to
20% in bit rate can be achieved for a given MSE.

45 9
1 o Sel of yuantization tables from the pre<ented algonthn

40 4 . |
° ©  Set of quantization Lables from psychovisual

experiments with different scalings

354
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Fig. 5 MSE versus bit rate curves for “Lena.” The points are de-
termined using the set of optimized quantization tables obtained
from the aigorithm and the set of scaled. standard quantization ta-
bles. There is about 13% to 21% reduction in bit rate using the
optimized quantization tables at the same distortion value.
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Fig. 6 MSE versus bit rate curves for a text image. The points are
determined using the set of optimized quantization tables obtained
from the aigorithm and the set of scaled, standard quantization ta-
bles. There is about a 14% 10 20% reduction in bit rate using the
optimized quantization tables at the same distortion value.

The quality of the reconstructed images using the opti-
mized guantization tables and the scaled, standard tables are
compared in Figs. 7and 8. Figures 7 and 8 show the expanded
portions of the reconstructed images. For the same bit rates
(about 1.1 bits/pixel for “‘Lena,"* and about 2.7 bits/pixel for
the text image). the reconstructed images using quantization
tables from our algorithm are Jess noisy than those using the
standard. scaled quantization tables.

The effect of the initial quantization table on the final
results is illustrated in Fig. 9, which shows the paths leading
toward the local minima starting from different initial quan-
tization tables. Depending on the initial quantization table.
the final quantization table may terminate at a different local
minimum. The greatest difference in bit rate for the same
distortion in Fig. 9 is about 3.5%. This demonstrates that the
result of convergence is not sensitive to the initial quanti-
zation table.

The algorithm currently takes about 13 minutes on a Sparc
10 workstation to obtain an optimized quantization table.
Note also that the optimized quantization tables (represented
in Figs. 5 and 6), produced by our algorithm for different
target MSQEs. are not simply scaled versions of each other.
The ratio of coefficients of any two tables varies significantly
over k. This fact underscores the value of an adaptive al-
gorithm.

The optimized quantization table for a particular image
can be applied well to a set of images with similar content.
whose spectral characteristics are more or Jess the same. We
used six medical ultrasound images from two different B-
scan imaging systems. One image was arbitrarily chosen as
the *‘training’" image. The optimized quantization table for
the *‘training’’ image was obtained, with the MSE equal to
6.158 and 1.952 bits/pixel. This quantization table was ap-
plied to the other five images to obtain pairs of MSE values
and bit rates (Fig. 10). Then optimized quantization tables
were obtained for each of the five images such that the re-
sulting MSE values were matched to the previous ones. In
this way, the bit rates associated with the individually opti-
mized quantization tables can be compared with the bit rates
associated with the quantization table optimized for the one
image (Fig. 10). It is shown that there is only about a few
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Fig. 7 Two biocks of 32x32 pixels showing part of the recon-
structed “Lena.” Both images are compressed at about 1.1 bits/
pixel: (a) The image is obtained using an optimized table, and (b) a
scaled, standard table is used.

percent increase in bit rate in the case of using one optimized
table from a ‘‘training’’ image on the whole set of images.
This implies that the optimization algorithm may be run just
once. The optimized quantization table can then be used on
the whole set of similar images with a little sacrifice in bit
rate. This fact enhances the value of the algorithm.

4 Conclusion .

An algorithm is presented to design a quantization table for
agivenimagetobe used in the ISO/JPEG DCT-based coders.
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(a)

(b)

Fig. 8 Two blocks of 32 x 32 pixels showing part of the recon-
structed text images. Both images are compressed at about 2.7 bits/
pixel: (a) The image is obtained using an optimized table, and (b) a
scaled, standard table is used.

A reduction of 15% to 20% in the bit rate resulting from
using a scaled version of the standard quantization table' for
a given distortion is typical. The merit of the algorithm lies
in the reduction of the computational complexity. Further-
more, the optimized quantization table for a particular image
is found to be applicable to other images with similar content
with a little sacrifice in bit rate. This fact implies that the
algorithm may be run just once for a set of similar images.
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